
Recent Research Topics in My Work Related to ML and DL 

• Deep learning-based surrogate models for flood map prediction
• Streamflow forecasting using deep learning techniques 
• Calibration of distributed hydrological models with machine learning 

techniques
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Introduction

• 2D and 1D models accurately identify flood risk and water depth maps.
• Studies focus on complex flood effects, interactions.
• High-resolution models need dense meshes, are computationally expensive.
• Their cost limits use in emergency early warning systems.
• Previously calibrated parameters.
• Our research uses surrogate Deep Learning (DL) models to speed up the generation

of water depth maps.
• The surrogate model is trained with outputs of the costly model to emulate it.
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Study Area Overview

• Location: Coastal Sada, NW Spain, 0.6 km².
• Identified as high flood risk area (APSFR).
• Confluence of Rego Maior and Regato de Fontoira.
• Culvert box at confluence impacts river and sea

interaction.
• Basin size: 24.75 km².
• Main runoff: Urban and industrial areas.
• Combined sewer system with 11 km network
• Recent floods: March 2016, December 2022.
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Overview of Iber-SWMM
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• Unstructured mesh with 467,162 elements.
• Varied resolution: hillslopes (30m), coastal/industrial (10m), urban/water streams (2m-1m).
• Sea level as boundary condition, constant for synthetic events.
• Simplified Manning coefficients for roughness.



Overview of Iber-SWMM
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• Combination of 1D and 2D models.
• Simulates surface and sewer flow dynamics.
• Used for detailed flood event analysis.
• 2D free-surface flow simulation.
• 1D dynamic sewer network model.
• Synchronized water exchange maintains mass

balance.
• Interaction through inlets and manholes.



Data: Terrain Features
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• Elevation: Altitude representation (25m resolution).
• Slope: Steepness of the terrain.
• Aspect: Shows the slope direction.
• Curvature: Terrains convexity or concavity (hard to plot).
• Mask: Displays excluded or included areas.
• Stream Power Index: Erosive potential of watercourses based on

slope.
• Curve Number (SCS-CN): Grid with varying values related to

runoff estimation.



Data: Rain Patterns
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• Time series: 120 steps, hourly scale.
• Precipitation from raster images.
• Iber runs with the images; surrogate

uses averaged series.
• Synthetic tide series incorporated for

compound effects.



Data: Water depth Maps
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• The events were then modeled in Iber-SWMM.
• Maps capture maximum water depths in 120 time steps.
• Examples provided for various precipitation intensities.
• Current map computation: ~3 hours (After Calibration)



U-Net: Spatial Variability of Infiltration
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• Originally designed for biomedical
image segmentation.

• Features a contracting path for
context and an expanding path for
precise localization.

• Efficient with small data sets due to
data augmentation capabilities.

• Adaptable to applications beyond
medical imaging, like satellite
imagery, autonomous driving and
wader depth prediction.



U-Net: Spatial Variability of Infiltration
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U-Net
• Different architectures have been tested, this 

one is the best one so far.
• The main characteristic is the inclusion of 

three inputs: terrain patch, gross rainfall, and 
net rainfall.

Gross and Net Rainfall Calculations
• Gross rainfall is uniform across all patches.
• Net rainfall is dynamically calculated for each 

patch, considering the spatial variability of 
infiltration.

Terrain Patch Analysis
• Average CN for each patch is calculated from 

the terrain image data.
• This CN is used to estimate the field capacity 

(S) at the beginning of the event.



U-Net: Spatial Variability of Infiltration
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Adjustments for Moisture Conditions
• IBER includes a "multiplier" parameter to adjust the

CN image uniformly, reflecting different antecedent
moisture conditions.

• Net rainfall is computed dynamically in the training 
pase.

• This adjustment allows the model to map flood
scenarios under varying soil moisture conditions.

X (multiplier)

(0.3, 0.5, 0.7, 1)



U-Net: Spatial Variability of Infiltration
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Model Training and Execution
• The surrogate model incorporates these multipliers and has been trained accordingly.
• Net rainfall for each patch is computed before processing by the model.
• The model requires about 3-4 hours for training, enabling dynamic training that

accounts for these calculations.
• Once trained, the generation of a water depth map takes about 3 seconds
• Loss values decrease indicating convergence.



U-Net: Spatial Variability of Infiltration
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Model Training and Validation
• The model has been trained and validated using 

observed and perturbed data sets.
• A real event from December 2022 was reserved and 

never shown to the neural network during any stage 
of training.

• The multiplier for CN is 0.5 (this event has evaluated 
in previous studies, we can use that for analysis).

Demonstration of Model Prediction
• The model's prediction capabilities are showcased 

using the event from December 2022.
• A specific prediction patch from this event is displayed 

to illustrate the model's performance.



U-Net: Spatial Variability of Infiltration
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U-Net: Spatial Variability of Infiltration
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• Presentation of Model Outputs
• The images display the maximum water

depth maps for the selected event.
• A second image is shown, which has been

filtered using a mask to only include pixels
with water depths greater than 10
centimeters.

• The primary concern being addressed is the
depth of flooding, highlighting where the
model needs further refinement or validation.



U-Net: Spatial Variability of Infiltration
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Observations on Water Depth
• There is a noticeable bias in pixels 

showing greater depths, specifically 
around 20-30 centimeters.

• Low dispersion in the results suggests 
that the neural network architecture is 
effective and consistent.



Flood extension
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• Two analyses: complete area and urban focus.
• High HR for complete area, satisfactory
performance.
• Slight HR decrease in urban area analysis.
• SM1 closely matches Iber-SWMM flood extents.
• Challenges in extrapolating extreme flood
scenarios.
• Broader confidence intervals for less extreme 
events.
• No significant difference: averaged vs raster
inputs. 



Conclusions
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Conclusions
• Current architecture predicts flood maps with acceptable precision.
• Calculation time for December 2022 event in Iber is about 3 hours.
• With the surrogate, calculation time reduces to about 3 seconds (without uncertainty).
Adjustment of Multiplier Ranges
• Modify the range of CN multipliers to prevent the model from needing to extrapolate, and

evaluate the impact on results.
Model for Uncertainty Estimation
• Develop a model capable of calculating maps for different multipliers and estimating maps

with uncertainties to better handle variable conditions.
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Introduction

• Streamflow prediction important for water resource management
• Hydroelectric efficiency and irrigation planning
• Reservoir operations and flood management
• Challenges due to non-linear streamflow nature
• Complexity from weather, terrain, and human activities
• Hydrological models simulate watershed responses
• Two main types: physically-based and data-driven
• Deep learning (DL) captures extensive data patterns
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Objectives

• Evaluate DL models for hourly streamflow prediction (first aproximation)
• DL models: 

• LSTM: Long Short-Term Memory
• GRU: Gated Recurrent Units
• CNN: Convolutional Neural Network
• Hybrid CNN Models: Models that combine features of CNNs with other types of neural 

networks
• Focus on two different-sized basins in Northwest Spain
• DL models are applied in various lead times 
• Monte Carlo Dropout (MCD) for uncertainty assessment

22



Study Area: Groba basin
• Study Area: Groba and Anllóns rivers, NW Spain
• Groba Basin: 17.05 km², complex topography
• Groba elevation range: 35 to 627 m.a.s.l.
• Groba average slope: 27.4%, steep terrain
• 9 meteorological stations in Groba
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Study Area: Anllóns basin
• Anllóns basin: 438 km², varied topography
• Anllóns elevation range: 59 to 473 m.a.s.l.
• Anllóns average slope: 12.1%, moderate terrain
• 16 meteorological stations Anllóns
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Data
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Anllóns
Variable Data count Mean Std P min P 25% P 50% P 75% P max Dataset

Rainfall 
(mm/h)

54664 0.16 0.55 0 0 0 0.05 15.4 Training
13666 0.16 0.56 0 0 0.03 0.08 8.57 Validation
17562 0.14 0.53 0 0 0 0.03 11.29 Test

Streamflow 
(m³/s)

54664 12.75 14.69 1.57 2.62 7.96 17.98 98.21 Training
13666 13.94 16.25 1.45 2.56 7.35 17.49 79.11 Validation
17562 7.92 9.99 0.9 2.25 3.93 9.45 74.19 Test

Groba
Variable Data count Mean Std P min P 25% P 50% P 75% P max Dataset

Rainfall 
(mm/h)

54661 0.15 0.69 0 0 0 0 37.7 Training
11016 0.14 0.61 0 0 0 0 17.95 Validation
17562 0.13 0.61 0 0 0 0 8.45 Test

Streamflow 
(m³/s)

54661 0.74 1.05 0.03 0.13 0.42 0.93 7.96 Training
11016 0.71 0.95 0.02 0.09 0.31 0.76 6.68 Validation
17562 0.44 0.63 0.02 0.06 0.21 0.56 7.66 Test

Statistical description of rainfall (mm/h) and streamflow (m³/s) data in the Anllóns Basin.

Statistical description of rainfall (mm/h) and streamflow (m³/s) data in the Groba Basin.

• December 2008 to September 2018, 
covering a period of approximately 
10 years.

• 80% Training and Cross-Validation
• 20% Reserved for Model Testing 



Data
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• December 2008 to September 2018, 
covering a period of approximately 
10 years.

• 80% Training and Cross-Validation
• 20% Reserved for Model Testing 



Methods: DL Models
Recurrent Neural Networks (RNNs)
• Structure: Input, hdden, output layers
• Unique feature: Recurrent connections
• Function: Maintains memory across time steps
• Equations: Manage states, inputs, and outputs
• Weights: W, U, V, define connections
• Activations: σ and Φ functions
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Long Short-Term Memory (LSTM)
• LSTM: Overcomes gradient issues in RNNs
• Capable of learning Long-Term dependencies
• Features three gates: Forget (f), input (i), output (o)
• Maintains two states: Cell (c) and hidden (t) 
• Equations govern gate operations and states 



Methods: DL Models
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Gated Recurrent Unit (GRU)
• GRUs: Advanced RNNs with gating mechanisms
• Designed to manage long temporal sequences
• Features two gates: update (z) and reset (r) 
• Equations manage information flow through gates
• Retains relevant information in long sequences
• Addresses RNN shortcomings like vanishing gradient

1D-Convolutional Neural Networks
• Optimized for time-series analysis
• Components: Convolutional, pooling, processing layers
• Feature extraction: Convolutional layers use filters
• Dimensionality reduction: pooling layers emphasize key features
• Flexible processing layer: Options include ANN, RNN, LSTM, GRU
• Efficient in filtering noise from data 



Methods: DL Models
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Lead time 
(hr) Model

1

LSTM GRU CNN CNN-LSTM CNN-GRU CNN-RNN3
6
12

Study Evaluated Six DL Models
• LSTM, GRU, CNN, CNN-LSTM, CNN-GRU, CNN-RNN
Assessed Across Four Forecasting Lead Times
• 1 hour, 3 hours, 6 hours, 12 hours



Methods: Fit and Uncertainty
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Monte Carlo Dropout: Uncertainty Quantification
• Efficient alternative: No model architecture changes
• Dropout in inference phase
• Process: Random weights set to zero
• Result: Diverse outputs reflect prediction variability
• Method: Average over T stochastic passes
• Output: Estimates predictive mean and variance

Goodness-of-Fit Evaluation
• Nash-Sutcliffe Efficiency (NSE): Measures fit between observed and 

simulated values
• NSE of 1 indicates perfect match
• Weighted NSE (WNSE) accounts for discharge magnitudes
• WNSE Adjusts weights based on observed discharge
• Positive p in WNSE emphasizes peak flows
• Negative p in WNSE emphasizes low flows



Methods: Model Inputs
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Input Variable Selection
• Forecasting Q(t) with prior time steps data
• Uses Q(t-1), Q(t-2), R(t-1), R(t-2) as inputs
• Approach minimizes computational demands
• Incremental addition of prior time steps
• Continues until no further improvement in performance

Sequence Input Variables
S₁ Q(t-1), R(t-1)
S₂ Q(t-1), Q(t-2), R(t-1), R(t-2)
S₃ Q(t-1), Q(t-2), Q(t-3), R(t-1), R(t-2), R(t-3)
S₄ Q(t-1), Q(t-2), Q(t-3), Q(t-4), R(t-1), R(t-2), R(t-3), R(t-4)
... ...
... ...
Sₖ Q(t-1), Q(t-2), Q(t-3), Q(t-4),..., Q(t-k), R(t-1), R(t-2), R(t-3), R(t-4),..., R(t-k)

Model Training
• DL models trained using TensorFlow
• Hyperparameters tuned via trial and Error
• Epochs set to 100
• Data normalized to [0,1] range
• Dropout rate set to 0.10
• Loss function: Mean squared error (MSE)



Results: Training Phase
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Lead time 
(hr) Model

MSE (m³/s)² 
Training 
Groba

MSE (m³/s)² 
Validation 

Groba

MSE (m³/s)² 
Training 
Anllóns

MSE (m³/s)² 
Validation 
Anllóns

1 LSTM 0.03 0.03 1.07 1.08
3 LSTM 0.09 0.08 2.71 2.77
6 LSTM 0.18 0.15 4.17 4.04

12 LSTM 0.23 0.22 17.05 15.88
1 GRU 0.02 0.02 0.97 0.98
3 GRU 0.09 0.07 1.94 1.96
6 GRU 0.17 0.17 3.94 3.83

12 GRU 0.24 0.22 16.18 15.55
1 CNN 0.03 0.03 1.07 1.08
3 CNN 0.09 0.09 2.22 2.23
6 CNN 0.18 0.15 4.25 4.17

12 CNN 0.22 0.21 17.81 17.09
1 CNN-LSTM 0.03 0.03 1.26 1.18
3 CNN-LSTM 0.09 0.09 1.91 1.88
6 CNN-LSTM 0.18 0.15 5.69 5.58

12 CNN-LSTM 0.24 0.22 15.17 14.31
1 CNN-GRU 0.03 0.03 1.36 1.27
3 CNN-GRU 0.09 0.07 1.76 1.68
6 CNN-GRU 0.18 0.14 6.08 6.05

12 CNN-GRU 0.23 0.22 16.79 16.41
1 CNN-RNN 0.04 0.05 1.55 1.56
3 CNN-RNN 0.09 0.08 2.12 1.92
6 CNN-RNN 0.18 0.14 4.85 4.86

12 CNN-RNN 0.26 0.25 14.16 13.35

• Trend of Increasing Errors with Longer Lead Times
• Errors grow as forecast period extends.
• Likely due to accumulating uncertainties.

• No Overfitting Observed
• Training and validation errors closely aligned.
• Refer to appendix for detailed scatter plots.

• Use of MSE as Loss Function
• MSE calculated for forecasts between 1 to 12 hours.

• Performance Variance Between Catchments
• Differences due to denormalized data handling.
• Larger flow rates in Anllóns lead to higher MSE values.
• Does not indicate less accuracy in Anllóns models.



Main Results: Testing Phase
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Predictive Skills in Testing Set
• Data of the training phase is omitted for the sake of

conciseness.
• DL models presented similar results with some exceptions
• Groba Basin: GRU models outperform others at 1h
• Anllóns Basin: Consistently high NSE near 0.99 at 1-hour
• Performance generally declines with longer lead times
• Groba Basin shows steep decrease in WNSE high values
• Anllóns Basin maintains better long-term performance
• Hybrid models (CNN-LSTM, GRU) not superior to simple

architectures



Main Results: GRU vs. Naive Forecast (Groba basin)
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Main Results: GRU vs. Naive Forecast (Groba basin)
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Groba
GRU

Time Step RMSE MAE NSE WNSE-HF WNSE-LF
1-Hour 0.110 0.031 0.969 0.933 0.977
3-Hour 0.202 0.055 0.897 0.746 0.930
6-Hour 0.290 0.099 0.786 0.474 0.850
12-Hour 0.347 0.095 0.696 0.240 0.801

Naive
Time Step RMSE MAE NSE WNSE-HF WNSE-LF

1-Hour 0.138 0.023 0.952 0.878 0.971
3-Hour 0.264 0.051 0.823 0.585 0.885
6-Hour 0.344 0.075 0.700 0.363 0.787
12-Hour 0.410 0.102 0.574 0.133 0.671

• A naive forecast: Predicts future values based on the most recent data point. 
• It predicts the next value will be the same as the last observed value.
• Used as a baseline to assess the performance of more complex forecasting models.



Main Results: GRU vs. Naive Forecast (Groba basin)
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Groba
GRU

Time Step RMSE MAE NSE WNSE-HF WNSE-LF
1-Hour 0.110 0.031 0.969 0.933 0.977
3-Hour 0.202 0.055 0.897 0.746 0.930
6-Hour 0.290 0.099 0.786 0.474 0.850
12-Hour 0.347 0.095 0.696 0.240 0.801

Naive
Time Step RMSE MAE NSE WNSE-HF WNSE-LF

1-Hour 0.138 0.023 0.952 0.878 0.971
3-Hour 0.264 0.051 0.823 0.585 0.885
6-Hour 0.344 0.075 0.700 0.363 0.787
12-Hour 0.410 0.102 0.574 0.133 0.671

High and Low Flow Performance (WNSE-HF and WNSE-LF Scores):
• GRU Model performs better in both high and low flow scenarios compared to the Naive model across all time steps.
• Naive Model consistently lower WNSE-HF, indicating weaker performance in high flow conditions.
• Both models exhibit decreasing performance with increasing lead time, more pronounced in the Naive model.



Main Results: GRU vs. Naive Forecast (Anllóns basin)
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Main Results: GRU vs. Naive Forecast (Anllóns basin)
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Anllóns
GRU

Time Step RMSE MAE NSE WNSE-HF WNSE-LF
1-Hour 0.700 0.413 0.995 0.994 0.994
3-Hour 1.006 0.544 0.990 0.987 0.989
6-Hour 1.718 0.829 0.970 0.962 0.968
12-Hour 3.142 1.154 0.901 0.849 0.909

Naive
Time Step RMSE MAE NSE WNSE-HF WNSE-LF

1-Hour 0.492 0.194 0.998 0.997 0.997
3-Hour 1.252 0.440 0.984 0.977 0.985
6-Hour 2.268 0.753 0.948 0.918 0.956
12-Hour 3.761 1.263 0.858 0.757 0.881

• The Naive model performs slightly better across the 1-hour time step.
• This could be due to the lack of significant variation between states in consecutive hours due to the characteristics of the basin.
• The GRU model performs better in 3, 6 and 12-hour lead times.
• The results of the deep learning models are better for lead times close to the time of concentration.



Discussion
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Times of concentration for the Groba and Anllóns basins using 
the methods by de Obras Públicas y Urbanismo (1978) and 
Giandoti Giandotti (1933)

Methods Groba Anllóns
Tc (Hr) Tc (Hr)

Témez 1.83 8.91
Giandoti 1.47 9.93

• No single DL model consistently outperforms others across all scenarios.

• Hybrid models (CNN-LSTM, CNN-GRU, CNN-RNN) show no significant advantage

over simpler LSTM and GRU models.

• Longer lead times show increased challenges in maintaining accuracy.

• The complexity of hydrological processes affects performance (i.e area and slope).

• Shorter concentration time in basins like Groba limits effectiveness beyond very

short lead times.

• In Groba, models fail for lead times longer than 1 hour.

• Models maintain better predictive accuracy in Anllóns basin.

• Adding more historical data does not improve model accuracy for longer lead times.



Main Results: Isolated Event in Groba Basin
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Visualization of the testing set for the Groba river, featuring observed values, mean forecast, and 95\% confidence intervals at varying lead times: a) 1-hour, b) 
3-hours, c) 6-hours, and d) 12-hours. The event data corresponds to November 24, 2017, at 20:00:00.



Discussion
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Times of concentration for the Groba and Anllóns basins using 
the methods by de Obras Públicas y Urbanismo (1978) and 
Giandoti Giandotti (1933)

Methods Groba Anllóns
Tc (Hr) Tc (Hr)

Témez 1.83 8.91
Giandoti 1.47 9.93

• No single DL model consistently outperforms others across all scenarios.

• Hybrid models (CNN-LSTM, CNN-GRU, CNN-RNN) show no significant advantage

over simpler LSTM and GRU models.

• Longer lead times show increased challenges in maintaining accuracy.

• The complexity of hydrological processes affects performance (i.e area and slope).

• Shorter concentration time in basins like Groba limits effectiveness beyond very

short lead times.

• In Groba, models fail for lead times longer than 1 hour.

• Models maintain better predictive accuracy in Anllóns basin.

• Adding more historical data does not improve model accuracy for longer lead times.



Main Results: : Isolated Event in Anllóns Basin
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Visualization of the testing set for the Anllóns river, featuring observed values, mean forecast, and 95\% confidence intervals at varying lead times: a) 1-hour, b) 
3-hours, c) 6-hours, and d) 12-hours. The data for the two events are from March 13, 2018, at 21:00:00 and March 15, 2018, at 03:00:00.



Conclusions
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• Six DL Models were Evaluated in Two Spanish Basins.

• No Single Model Dominated Across All Conditions.

• Hybrid Models Like CNN-LSTM Showed No Clear Advantage.

• Significant Accuracy Drop Over Longer Lead Times in Small Basins.

• Performance Affected by Hydrological Basin Characteristics (Time of Concentration).

• Different Data Sources can Improve Extend the Presented Application.

• Incorporating Rainfall Forecasts May Extend Lead Times.

• This Study is a First Approximation in our Study Region.

• Provides Baseline for Future DL Model Applications.
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Basic idea:
• Distributed models based on 2D Shallow Water

Equations (SWE) are becoming fundamental in
water resources engineering.

• Unstructured mesh (basin area: 240 Km²)
• Running the model hundreds of times, requires a

significant investment of computational time.
• Combine a Surrogate Model based on Artificial Neural

Networks (SM-ANN) and an Evolutionary Algorithm (EA).
• Purpose: To perform the calibration process of a

Distributed Model.
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Structure of the SM-ANN
• Input: X ∈ ℝN𝑥𝑥mx : Individuals in the 

population. In this case, parameters of the 
model.

• Output: Y ∈ ℝN𝑥𝑥m𝑦𝑦 : Fitness of the 
population members. Objective functions to 
optimize.

• 2 objective functions: NSE and WNSE
• For a parameter set x(𝑖𝑖), the ANN aims to 

predict the fitness values y∗(𝑖𝑖)

• The ANN, creates a simulated solution space.
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Scheme of application of the SA-EA
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Real vs. predicted fit values
a) Synthetic event b) Real event
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Observed and simulated hydrographs
a) Synthetic event b) Real event
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Computation times
a) Synthetic event b) Real event
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