Recent Research Topics in My Work Related to ML and DL

- Deep learning-based surrogate models for flood map prediction
- Streamflow forecasting using deep learning techniques
- Calibration of distributed hydrological models with machine learning techniques

INTEGRATING NET RAINFALL CALCULATION IN DEEP LEARNING-BASED SURROGATE MODELING FRAMEWORKS FOR URBAN FLOOD PREDICTION

Juan F. Farfán-Durán¹ Luis Cea¹, Carlos Montalvo¹, Jerónimo Puertas^{1 1,} Joao P. Leitao²

¹Universidade da Coruña, Water and Environmental Engineering Group, Center for Technological Innovation in Construction and Civil Engineering (CITEEC), A Coruña, Spain

²Department of Urban Water Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland

Introduction

- 2D and 1D models accurately identify flood risk and water depth maps.
- Studies focus on complex flood effects, interactions.
- High-resolution models need dense meshes, are computationally expensive.
- Their cost limits use in emergency early warning systems.
- Previously calibrated parameters.
- Our research uses surrogate Deep Learning (DL) models to speed up the generation of water depth maps.
- The surrogate model is trained with outputs of the costly model to emulate it.

Study Area Overview

- Location: Coastal Sada, NW Spain, 0.6 km².
- Identified as high flood risk area (APSFR).
- Confluence of *Rego Maior* and *Regato de Fontoira*.
- Culvert box at confluence impacts river and sea interaction.
- Basin size: 24.75 km².
- Main runoff: Urban and industrial areas.
- Combined sewer system with 11 km network
- Recent floods: March 2016, December 2022.

Overview of Iber-SWMM

- Unstructured mesh with 467,162 elements.
- Varied resolution: hillslopes (30m), coastal/industrial (10m), urban/water streams (2m-1m).
- Sea level as boundary condition, constant for synthetic events.
- Simplified Manning coefficients for roughness.

Overview of Iber-SWMM

- Combination of 1D and 2D models.
- Simulates surface and sewer flow dynamics.
- Used for detailed flood event analysis.
- 2D free-surface flow simulation.
- 1D dynamic sewer network model.
- Synchronized water exchange maintains mass balance.
- Interaction through inlets and manholes.

Data: Terrain Features

- Elevation: Altitude representation (25m resolution).
- Slope: Steepness of the terrain.
- Aspect: Shows the slope direction.
- Curvature: Terrains convexity or concavity (hard to plot).
- Mask: Displays excluded or included areas.
- Stream Power Index: Erosive potential of watercourses based on slope.
- Curve Number (SCS-CN): Grid with varying values related to runoff estimation.

Data: Rain Patterns

- Time series: 120 steps, hourly scale.
- Precipitation from raster images.
- Iber runs with the images; surrogate uses averaged series.
- Synthetic tide series incorporated for compound effects.

Data: Water depth Maps

- The events were then modeled in Iber-SWMM.
- Maps capture maximum water depths in 120 time steps.
- Examples provided for various precipitation intensities.
- Current map computation: ~3 hours (After Calibration)

- Originally designed for biomedical image segmentation.
- Features a contracting path for context and an expanding path for precise localization.
- Efficient with small data sets due to data augmentation capabilities.
- Adaptable to applications beyond medical imaging, like satellite imagery, autonomous driving and wader depth prediction.

U-Net

- Different architectures have been tested, this one is the best one so far.
- The main characteristic is the inclusion of three inputs: terrain patch, gross rainfall, and net rainfall.

Gross and Net Rainfall Calculations

- Gross rainfall is uniform across all patches.
- Net rainfall is dynamically calculated for each patch, considering the spatial variability of infiltration.

Terrain Patch Analysis

- Average CN for each patch is calculated from the terrain image data.
- This CN is used to estimate the field capacity (S) at the beginning of the event.

2048

Adjustments for Moisture Conditions

- IBER includes a "multiplier" parameter to adjust the CN image uniformly, reflecting different antecedent moisture conditions.
- Net rainfall is computed dynamically in the training pase.
- This adjustment allows the model to map flood scenarios under varying soil moisture conditions.

Model Training and Execution

- The surrogate model incorporates these multipliers and has been trained accordingly.
- Net rainfall for each patch is computed before processing by the model.
- The model requires about 3-4 hours for training, enabling **dynamic training** that accounts for these calculations.
- Once trained, the generation of a water depth map takes about 3 seconds
- Loss values decrease indicating convergence.

Model Training and Validation

- The model has been trained and validated using observed and perturbed data sets.
- A real event from December 2022 was reserved and never shown to the neural network during any stage of training.
- The multiplier for CN is 0.5 (this event has evaluated in previous studies, we can use that for analysis).

Demonstration of Model Prediction

- The model's prediction capabilities are showcased using the event from December 2022.
- A specific prediction patch from this event is displayed to illustrate the model's performance.

Presentation of Model Outputs

- The images display the maximum water depth maps for the selected event.
- A second image is shown, which has been filtered using a mask to only include pixels with water depths greater than 10 centimeters.
- The primary concern being addressed is the depth of flooding, highlighting where the model needs further refinement or validation.

Observations on Water Depth

- There is a noticeable bias in pixels showing greater depths, specifically around 20-30 centimeters.
- Low dispersion in the results suggests that the neural network architecture is effective and consistent.

Flood extension

- Two analyses: complete area and urban focus.
- High HR for complete area, satisfactory performance.
- Slight HR decrease in urban area analysis.
- SM1 closely matches Iber-SWMM flood extents.
- Challenges in extrapolating extreme flood scenarios.
- Broader confidence intervals for less extreme events.
- No significant difference: averaged vs raster inputs.

Conclusions

Conclusions

- Current architecture predicts flood maps with acceptable precision.
- Calculation time for December 2022 event in Iber is about 3 hours.
- With the surrogate, calculation time reduces to about 3 seconds (without uncertainty).

Adjustment of Multiplier Ranges

 Modify the range of CN multipliers to prevent the model from needing to extrapolate, and evaluate the impact on results.

Model for Uncertainty Estimation

• Develop a model capable of calculating maps for different multipliers and estimating maps with uncertainties to better handle variable conditions.

A COMPARATIVE ANALYSIS OF DEEP LEARNING TECHNIQUES FOR RIVER FLOW FORECASTING IN NORTHWEST SPAIN

Juan F. Farfán-Durán, Luis Cea

Universidade da Coruña, Water and Environmental Engineering Group, Center for Technological Innovation in Construction and Civil Engineering (CITEEC), Elviña, 15071 A~Coruña, Spain

Introduction

- Streamflow prediction important for water resource management
- Hydroelectric efficiency and irrigation planning
- Reservoir operations and flood management
- Challenges due to non-linear streamflow nature
- Complexity from weather, terrain, and human activities
- Hydrological models simulate watershed responses
- Two main types: physically-based and data-driven
- Deep learning (DL) captures extensive data patterns

Objectives

- Evaluate DL models for hourly streamflow prediction (first aproximation)
- DL models:
 - **LSTM**: Long Short-Term Memory
 - **GRU**: Gated Recurrent Units
 - **CNN**: Convolutional Neural Network
 - Hybrid CNN Models: Models that combine features of CNNs with other types of neural networks
- Focus on two different-sized basins in Northwest Spain
- DL models are applied in various lead times
- Monte Carlo Dropout (MCD) for uncertainty assessment

Study Area: Groba basin

- Study Area: Groba and Anllóns rivers, NW Spain
- Groba Basin: 17.05 km², complex topography
- Groba elevation range: 35 to 627 m.a.s.l.
- Groba average slope: 27.4%, steep terrain
- 9 meteorological stations in Groba

Study Area: Anllóns basin

- Anllóns basin: 438 km², varied topography
- Anllóns elevation range: 59 to 473 m.a.s.l.
- Anllóns average slope: 12.1%, moderate terrain
- 16 meteorological stations Anllóns

Data

- December 2008 to September 2018, covering a period of approximately 10 years.
- 80% Training and Cross-Validation
- 20% Reserved for Model Testing

Groba									
Variable	Data count	Mean	Std	P min	P 25%	P 50%	P 75%	P max	Dataset
Deinfell	54661	0.15	0.69	0	0	0	0	37.7	Training
Raintali (mm/b)	11016	0.14	0.61	0	0	0	0	17.95	Validation
(11111/11)	17562	0.13	0.61	0	0	0	0	8.45	Test
Ctree en flerre	54661	0.74	1.05	0.03	0.13	0.42	0.93	7.96	Training
Streamflow	11016	0.71	0.95	0.02	0.09	0.31	0.76	6.68	Validation
(m²/s)	17562	0.44	0.63	0.02	0.06	0.21	0.56	7.66	Test

Statistical description of rainfall (mm/h) and streamflow (m³/s) data in the Groba Basin.

			-	Anl	<u>lóns</u>	_			
Variable	Data count	Mean	Std	P min	P 25%	P 50%	P 75%	P max	Dataset
Deinfell	54664	0.16	0.55	0	0	0	0.05	15.4	Training
Rainfall (mm/b)	13666	0.16	0.56	0	0	0.03	0.08	8.57	Validation
(1111/11)	17562	0.14	0.53	0	0	0	0.03	11.29	Test
Ot	54664	12.75	14.69	1.57	2.62	7.96	17.98	98.21	Training
Streamflow	13666	13.94	16.25	1.45	2.56	7.35	17.49	79.11	Validation
(m²/s)	17562	7.92	9.99	0.9	2.25	3.93	9.45	74.19	Test

Statistical description of rainfall (mm/h) and streamflow (m³/s) data in the Anllóns Basin.

Data

- December 2008 to September 2018, covering a period of approximately 10 years.
- 80% Training and Cross-Validation
- 20% Reserved for Model Testing

Methods: DL Models

Recurrent Neural Networks (RNNs)

- Structure: Input, hdden, output layers
- Unique feature: Recurrent connections
- Function: Maintains memory across time steps
- Equations: Manage states, inputs, and outputs
- Weights: W, U, V, define connections
- Activations: σ and Φ functions

Long Short-Term Memory (LSTM)

- LSTM: Overcomes gradient issues in RNNs
- Capable of learning Long-Term dependencies
- Features three gates: Forget (*f*), input (*i*), output (*o*)
- Maintains two states: Cell (c) and hidden (t)
- Equations govern gate operations and states

$$h_t = \sigma(\mathbf{W} \cdot h_{t-1} + \mathbf{U} \cdot x_t + b_h)$$
$$o_t = \phi(\mathbf{V} \cdot h_t + b_y)$$

$$f_t = \sigma(\mathbf{U}_f \cdot \mathbf{x}_t + \mathbf{W}_f \cdot \mathbf{h}_{t-1} + \mathbf{b}_f)$$

$$i_t = \sigma(\mathbf{U}_i \cdot \mathbf{x}_t + \mathbf{W}_i \cdot \mathbf{h}_{t-1} + \mathbf{b}_i)$$

$$o_t = \sigma(\mathbf{U}_o \cdot \mathbf{x}_t + \mathbf{W}_o \cdot \mathbf{h}_{t-1} + \mathbf{b}_o)$$

$$c_t = f_t \otimes c_{t-1} + i_t \otimes \tanh(\mathbf{U}_c \cdot \mathbf{x}_t + \mathbf{W}_c \cdot \mathbf{h}_{t-1} + \mathbf{b}_c)$$

$$h_t = o_t \otimes \tanh(c_t)$$

Methods: DL Models

Gated Recurrent Unit (GRU)

- GRUs: Advanced RNNs with gating mechanisms
- Designed to manage long temporal sequences
- Features two gates: update (*z*) and reset (*r*)
- Equations manage information flow through gates
- Retains relevant information in long sequences
- Addresses RNN shortcomings like vanishing gradient

1D-Convolutional Neural Networks

- Optimized for time-series analysis
- Components: Convolutional, pooling, processing layers
- Feature extraction: Convolutional layers use filters
- Dimensionality reduction: pooling layers emphasize key features
- Flexible processing layer: Options include ANN, RNN, LSTM, GRU
- Efficient in filtering noise from data

$$\begin{aligned} \boldsymbol{z}_t &= \sigma(\mathbf{U}_{\mathbf{z}} \cdot \boldsymbol{x}_t + \mathbf{W}_{\mathbf{z}} \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_z) \\ \boldsymbol{r}_t &= \sigma(\mathbf{U}_{\mathbf{r}} \cdot \boldsymbol{x}_t + \mathbf{W}_{\mathbf{r}} \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_r) \\ \tilde{\boldsymbol{h}}_t &= \tanh(\mathbf{U} \cdot \boldsymbol{x}_t + \boldsymbol{r}_t \otimes \mathbf{W} \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_h) \\ \boldsymbol{h}_t &= (1 - \boldsymbol{z}_t) \otimes \boldsymbol{h}_{t-1} + \boldsymbol{z}_t \otimes \tilde{\boldsymbol{h}}_t \\ \boldsymbol{o}_t &= g(\mathbf{V} \cdot \boldsymbol{h}_t + \boldsymbol{b}_o) \end{aligned}$$

Methods: DL Models

Study Evaluated Six DL Models

- LSTM, GRU, CNN, CNN-LSTM, CNN-GRU, CNN-RNN
- **Assessed Across Four Forecasting Lead Times**
- 1 hour, 3 hours, 6 hours, 12 hours

Lead time (hr)	Model					
1 3 6 12	LSTM	GRU	CNN	CNN-LSTM	CNN-GRU	CNN-RNN

Methods: Fit and Uncertainty

Goodness-of-Fit Evaluation

- Nash-Sutcliffe Efficiency (NSE): Measures fit between observed and simulated values
- NSE of 1 indicates perfect match
- Weighted NSE (WNSE) accounts for discharge magnitudes
- WNSE Adjusts weights based on observed discharge
- Positive *p* in WNSE emphasizes peak flows
- Negative *p* in WNSE emphasizes low flows

Monte Carlo Dropout: Uncertainty Quantification

- Efficient alternative: No model architecture changes
- Dropout in inference phase
- Process: Random weights set to zero
- Result: Diverse outputs reflect prediction variability
- Method: Average over *T* stochastic passes
- Output: Estimates predictive mean and variance

$$NSE = 1 - \frac{\sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2}{\sum_{i=1}^{n} (y^{(i)} - \overline{y}^{(i)})^2}$$

$$WNSE = 1 - \frac{\sum_{i=1}^{N} w_i (y^{(i)} - \hat{y}^{(i)})^2}{\sum_{i=1}^{N} w_i (y^{(i)} - \overline{y}_{\mathbf{w}})^2} \qquad \qquad w_i = \frac{(y^{(i)})^p}{\sum_{i=1}^{n} (y^{(i)})^p}$$

Methods: Model Inputs

Input Variable Selection

- Forecasting Q(t) with prior time steps data
- Uses Q(t-1), Q(t-2), R(t-1), R(t-2) as inputs
- Approach minimizes computational demands
- Incremental addition of prior time steps
- Continues until no further improvement in performance

Model Training

- DL models trained using TensorFlow
- Hyperparameters tuned via trial and Error
- Epochs set to 100
- Data normalized to [0,1] range
- Dropout rate set to 0.10
- Loss function: Mean squared error (MSE)

Sequence	Input Variables
S ₁	Q(t-1), R(t-1)
S ₂	Q(t-1), Q(t-2), R(t-1), R(t-2)
S ₃	Q(t-1), Q(t-2), Q(t-3), R(t-1), R(t-2), R(t-3)
S ₄	Q(t-1), Q(t-2), Q(t-3), Q(t-4), R(t-1), R(t-2), R(t-3), R(t-4)
S _k	Q(t-1), Q(t-2), Q(t-3), Q(t-4),, Q(t-k), R(t-1), R(t-2), R(t-3), R(t-4),, R(t-k)

Results: Training Phase

• Trend of Increasing Errors with Longer Lead Times

- Errors grow as forecast period extends.
- Likely due to accumulating uncertainties.
- No Overfitting Observed
 - Training and validation errors closely aligned.
 - Refer to appendix for detailed scatter plots.

Use of MSE as Loss Function

MSE calculated for forecasts between 1 to 12 hours.

Performance Variance Between Catchments

- Differences due to denormalized data handling.
- Larger flow rates in Anllóns lead to higher MSE values.
- Does not indicate less accuracy in Anllóns models.

Lead time (hr)	Model	MSE (m³/s)² Training Groba	MSE (m³/s)² Validation Groba	MSE (m³/s)² Training Anllóns	MSE (m³/s)² Validation Anllóns
1	LSTM	0.03	0.03	1.07	1.08
3	LSTM	0.09	0.08	2.71	2.77
6	LSTM	0.18	0.15	4.17	4.04
12	LSTM	0.23	0.22	17.05	15.88
1	GRU	0.02	0.02	0.97	0.98
3	GRU	0.09	0.07	1.94	1.96
6	GRU	0.17	0.17	3.94	3.83
12	GRU	0.24	0.22	16.18	15.55
1	CNN	0.03	0.03	1.07	1.08
3	CNN	0.09	0.09	2.22	2.23
6	CNN	0.18	0.15	4.25	4.17
12	CNN	0.22	0.21	17.81	17.09
1	CNN-LSTM	0.03	0.03	1.26	1.18
3	CNN-LSTM	0.09	0.09	1.91	1.88
6	CNN-LSTM	0.18	0.15	5.69	5.58
12	CNN-LSTM	0.24	0.22	15.17	14.31
1	CNN-GRU	0.03	0.03	1.36	1.27
3	CNN-GRU	0.09	0.07	1.76	1.68
6	CNN-GRU	0.18	0.14	6.08	6.05
12	CNN-GRU	0.23	0.22	16.79	16.41
1	CNN-RNN	0.04	0.05	1.55	1.56
3	CNN-RNN	0.09	0.08	2.12	1.92
6	CNN-RNN	0.18	0.14	4.85	4.86
12	CNN-RNN	0.26	0.25	14.16	13.35

Main Results: Testing Phase

Predictive Skills in Testing Set

- Data of the training phase is omitted for the sake of conciseness.
- DL models presented similar results with some exceptions
- Groba Basin: GRU models outperform others at 1h
- Anllóns Basin: Consistently high NSE near 0.99 at 1-hour
- Performance generally declines with longer lead times
- Groba Basin shows steep decrease in WNSE high values
- Anllóns Basin maintains better long-term performance
- Hybrid models (CNN-LSTM, GRU) not superior to simple architectures

Main Results: GRU vs. Naive Forecast (Groba basin)

Main Results: GRU vs. Naive Forecast (Groba basin)

- A naive forecast: Predicts future values based on the most recent data point.
- It predicts the next value will be the same as the last observed value.
- Used as a baseline to assess the performance of more complex forecasting models.

Groba						
		G	งป			
Time Step	RMSE	MAE	NSE	WNSE-HF	WNSE-LF	
1-Hour	0.110	0.031	0.969	0.933	0.977	
3-Hour	0.202	0.055	0.897	0.746	0.930	
6-Hour	0.290	0.099	0.786	0.474	0.850	
12-Hour	0.347	0.095	0.696	0.240	0.801	
		Na	ive			
Time Step	RMSE	MAE	NSE	WNSE-HF	WNSE-LF	
1-Hour	0.138	0.023	0.952	0.878	0.971	
3-Hour	0.264	0.051	0.823	0.585	0.885	
6-Hour	0.344	0.075	0.700	0.363	0.787	
12-Hour	0.410	0.102	0.574	0.133	0.671	

Main Results: GRU vs. Naive Forecast (Groba basin)

High and Low Flow Performance (WNSE-HF and WNSE-LF Scores):

- GRU Model performs better in both high and low flow scenarios compared to the Naive model across all time steps.
- Naive Model consistently lower WNSE-HF, indicating weaker performance in high flow conditions.
- Both models exhibit decreasing performance with increasing lead time, more pronounced in the Naive model.

Groba						
		G	ิรป			
Time Step	RMSE	MAE	NSE	WNSE-HF	WNSE-LF	
1-Hour	0.110	0.031	0.969	0.933	0.977	
3-Hour	0.202	0.055	0.897	0.746	0.930	
6-Hour	0.290	0.099	0.786	0.474	0.850	
12-Hour	0.347	0.095	0.696	0.240	0.801	
		Na	ive			
Time Step	RMSE	MAE	NSE	WNSE-HF	WNSE-LF	
1-Hour	0.138	0.023	0.952	0.878	0.971	
3-Hour	0.264	0.051	0.823	0.585	0.885	
6-Hour	0.344	0.075	0.700	0.363	0.787	
12-Hour	0.410	0.102	0.574	0.133	0.671	

Main Results: GRU vs. Naive Forecast (Anllóns basin)

Main Results: GRU vs. Naive Forecast (Anllóns basin)

- The Naive model performs slightly better across the 1-hour time step.
- This could be due to the lack of significant variation between states in consecutive hours due to the characteristics of the basin.
- The GRU model performs better in 3, 6 and 12-hour lead times.
- The results of the deep learning models are better for lead times close to the time of concentration.

Anllóns							
	GRU						
Time Step	RMSE	MAE	NSE	WNSE-HF	WNSE-LF		
1-Hour	0.700	0.413	0.995	0.994	0.994		
3-Hour	1.006	0.544	0.990	0.987	0.989		
6-Hour	1.718	0.829	0.970	0.962	0.968		
12-Hour	3.142	1.154	0.901	0.849	0.909		
		Na	ive				
Time Step	RMSE	MAE	NSE	WNSE-HF	WNSE-LF		
1-Hour	0.492	0.194	0.998	0.997	0.997		
3-Hour	1.252	0.440	0.984	0.977	0.985		
6-Hour	2.268	0.753	0.948	0.918	0.956		
12-Hour	3.761	1.263	0.858	0.757	0.881		

Discussion

- No single DL model consistently outperforms others across all scenarios.
- Hybrid models (CNN-LSTM, CNN-GRU, CNN-RNN) show no significant advantage over simpler LSTM and GRU models.
- Longer lead times show increased challenges in maintaining accuracy.
- The complexity of hydrological processes affects performance (i.e area and slope).
- Shorter concentration time in basins like Groba limits effectiveness beyond very short lead times.
- In Groba, models fail for lead times longer than 1 hour.
- Models maintain better predictive accuracy in Anllóns basin.
- Adding more historical data does not improve model accuracy for longer lead times.

Mathada	Groba	Anllóns
methods	Tc (Hr)	Tc (Hr)
Témez	1.83	8.91
Giandoti	1.47	9.93

Times of concentration for the Groba and Anllóns basins using the methods by de Obras Públicas y Urbanismo (1978) and Giandoti Giandotti (1933)

Main Results: Isolated Event in Groba Basin

Visualization of the testing set for the Groba river, featuring observed values, mean forecast, and 95\% confidence intervals at varying lead times: a) 1-hour, b) 3-hours, c) 6-hours, and d) 12-hours. The event data corresponds to November 24, 2017, at 20:00:00.

Discussion

- No single DL model consistently outperforms others across all scenarios.
- Hybrid models (CNN-LSTM, CNN-GRU, CNN-RNN) show no significant advantage over simpler LSTM and GRU models.
- Longer lead times show increased challenges in maintaining accuracy.
- The complexity of hydrological processes affects performance (i.e area and slope).
- Shorter concentration time in basins like Groba limits effectiveness beyond very short lead times.
- In Groba, models fail for lead times longer than 1 hour.
- Models maintain better predictive accuracy in Anllóns basin.
- Adding more historical data does not improve model accuracy for longer lead times.

Mathada	Groba	Anllóns
methods	Tc (Hr)	Tc (Hr)
Témez	1.83	8.91
Giandoti	1.47	9.93

Times of concentration for the Groba and Anllóns basins using the methods by de Obras Públicas y Urbanismo (1978) and Giandoti Giandotti (1933)

Main Results: : Isolated Event in Anllóns Basin

Visualization of the testing set for the Anllóns river, featuring observed values, mean forecast, and 95\% confidence intervals at varying lead times: a) 1-hour, b) 3-hours, c) 6-hours, and d) 12-hours. The data for the two events are from March 13, 2018, at 21:00:00 and March 15, 2018, at 03:00:00.

Conclusions

- Six DL Models were Evaluated in Two Spanish Basins.
- No Single Model Dominated Across All Conditions.
- Hybrid Models Like CNN-LSTM Showed No Clear Advantage.
- Significant Accuracy Drop Over Longer Lead Times in Small Basins.
- Performance Affected by Hydrological Basin Characteristics (Time of Concentration).
- Different Data Sources can Improve Extend the Presented Application.
- Incorporating Rainfall Forecasts May Extend Lead Times.
- This Study is a First Approximation in our Study Region.
- Provides Baseline for Future DL Model Applications.

OPTIMIZATION OF DISTRIBUTED MODELS USING EVOLUTIONARY ALGORITHMS AND SURROGATE MODELING

Juan F. Farfán-Durán¹, Arash Heidari², Ivo Couckuyt², Tom Dhaene², Jerónimo Puertas¹, Luís Cea¹

1 Universidade da Coruna, Water and Environmental Engineering Group, Center for Technological Innovation in Construction and Civil Engineering (CITEEC)

2 ² Faculty of Engineering and Architecture, Ghent University - imec, Ghent, Belgium

Basic idea:

- Distributed models based on 2D Shallow Water Equations (SWE) are becoming fundamental in water resources engineering.
- Unstructured mesh (basin area: 240 Km²)
- Running the model hundreds of times, requires a significant investment of computational time.
- Combine a Surrogate Model based on Artificial Neural Networks (SM-ANN) and an Evolutionary Algorithm (EA).
- Purpose: To perform the calibration process of a Distributed Model.

Structure of the SM-ANN

- Input: $X \in \mathbb{R}^{N \times m_x}$: Individuals in the population. In this case, parameters of the model.
- **Output:** $\mathbf{Y} \in \mathbb{R}^{N \times m_y}$: Fitness of the population members. Objective functions to optimize.
- 2 objective functions: NSE and WNSE
- For a parameter set $\mathbf{x}^{(i)}$, the ANN aims to predict the fitness values $\mathbf{y} \mathbf{*}^{(i)}$
- The ANN, creates a simulated solution space.

Scheme of application of the SA-EA

Real vs. predicted fit values

a) Synthetic event

b) Real event

Observed and simulated hydrographs

a) Synthetic event

b) Real event

Computation times

a) Synthetic event

b) Real event

Bibliography

- Farfán, J. F., & Cea, L. (2021). Coupling artificial neural networks with the artificial bee colony algorithm for global calibration of hydrological models. *Neural Computing and Applications*, 33, 8479-8494.
- Cea, L., & Bladé, E. (2015). A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. *Water resources research*, *51*(7), 5464-5486.
- Couckuyt, I., Gorissen, D., Rouhani, H., Laermans, E., & Dhaene, T. (2009). Evolutionary regression modeling with active learning: An application to rainfall runoff modeling. In *Adaptive and Natural Computing Algorithms: 9th International Conference, ICANNGA 2009, Kuopio, Finland, April 23-25,* 2009, Revised Selected Papers 9 (pp. 548-558). Springer Berlin Heidelberg.

Thank you

This work was partially funded by the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) within the project "SATURNO: Early warning against pluvial flooding in urban areas" (PID2020-118368RB-I00).

Proyecto SATURNO (PID2020-118368RB-I00) Sistemas de Alerta Temprana frente a inundaciones pluviales en entornos urbanos Financiado por el Ministerio de Ciencia e Innovación

